
Robert Chaney and Fred Thomas Sept. 20, 2005
Connecting Math, Science and Technology

Using the Motor Controller

The Motor Controller is designed to be a convenient tool for teachers and students who want
to use math and science to make thing happen. Mathematical equations are the heart of
math, science and technology, and the Motor Controller can help students to see and
understand those equations. The equations are not just “formulas” to find the answer to a
specific word problem; they are real, functioning links between actual events. Systems that
automatically control motors and other equipment are a vital part of modern engineering and
technology, and they are a very powerful tool for use in math and science classrooms.

Input
Immediate, real-

world
data from sensors

Automated
Control
Systems

 Functions
Logic and equations

programmed by
learners

 Output
Immediate, real-

world
response from an
automated system

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 1
Connecting Math, Science and Technology

Table of Contents page

Interactive Programs and Programming Modules 2
What the Motor Controller Really Can Control—and How 3

Lights, Buzzers and Other Basic DC Devices 3
Servo Motors 4
Stepper Motors 5

Using the Motor Controller with TI Graphing Calculators 7
Program Descriptions 7
Variable Use 9

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 2
Connecting Math, Science and Technology

Interactive Programs and Programming Modules
Our goal is to make the programming easy enough for students and teachers to enhance the
learning of math and science, rather than obstructing it. We want students to focus on the
math and science content and on the application of that content to realistic technical
situations, not to focus on the details of programming. At the same time, we want all the
programming to be open, so that anyone who is interested can view and perhaps improve on
the existing programs.
The programs that work the Motor Controller are available both as
interactive programs and as programming modules.1 Interactive
programs (such as the SIGNAL program at right) ask users to provide
input through on-screen questions and menus The programming
modules (such as SIGNALF below) have the same functionality but are
designed for use by students or teachers as building blocks for writing
their own programs. We have also established a system for the use of
variables which allows the different subroutines to be used without
conflicts.
The most straight-forward use of the Motor Controller is simply to turn
things on and off. The interactive SIGNAL program does this by
requesting that the user input an integer value for the signal, S, and
then input a time, T, in second. The program activates the
corresponding lines on the Motor Controller using the binary
representation of S. The program at right turns on line 4 (binary 1000 =
23 = 8) and line 3 (binary 0100 = 22 = 4) for 2.345 seconds.
The corresponding “programming module” is SIGNALF, meaning
“Signal for”. SIGNALF assumes that the integer has already been

stored as the variable, S, and
that the time (in seconds) has
already been stored as the
variable, T. This subroutine
activates the output using the
existing values of those two
variables.
The TI-83 / 84 program at left

(easily entered from the keypad of a calculator) is all that is required to execute a series of 3
timed signals. If used with the RC Controller, this program would make the car move forward
for 5 seconds, stop for 3 seconds, then back while turning left for 2 seconds.

1 This principle applies to both the currently available programs for TI graphing calculators and to LabVIEW
computer programs that will be available in the Fall of 2005 at www.mathmachines.net.

2üS
5üT
prgmSIGNALF
0üS
3üT
prgmSIGNALF
5üS
2üT
prgmSIGNALF

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 3
Connecting Math, Science and Technology

What the Motor Controller Really Can Control—and How
We call it a “Motor Controller” because it does a good job controlling several types of motors.
On the other hand we may need to change the name because the board can also control
almost any other type of low-current DC device, including lights, buzzers, solenoids, fans,
“muscle wire” and more.
It is extremely important, however, that any power supply and any devices you attach to the
Motor Controller have the correct current and voltage specifications.

• The devices you attach must be DC devices, the total current for all devices must
not exceed 1 A (1000 mA), the current for any one device must not exceed 0.35 A
(350 mA), and the voltage must not exceed 24 V.

• The power supply’s voltage and current capacity must match the needs of the
device. (Servo motors are an exception, since the board’s voltage steps down the applied
voltage to give the servo motors the 5 volts they need.)

Lights, Buzzers and Other Basic DC Devices
We’ll start with the miscellaneous things like buzzers and lights. You need to provide a power
source that matches the current and voltage requirements of the devices. In general, we
prefer to work with 12-V devices and to use a 1-A, 12-V filtered power supply.
In general, these devices are attached using the 6-position, screw terminal block, Two of the
terminals on that block are marked as “+,” and these are both connected directly to the
positive of your input source. If you connect the positive wire of a buzzer, for example, to one
of these “+” terminals and then touch the buzzer’s negative wire to the board ground (say, the
heat sink on the voltage regulator or the “GND” pin on one of the servo connectors) the
buzzer will sound. The trick is to make that connection to ground under software control, and
that’s where the numbered terminals on the terminal block come in. Normally, terminals 1, 2,
3 and 4 are non-conducting—they keep anything connected to them isolated from ground.
The same software signal that lights the each LED also completes the circuit through the
corresponding numbered terminal and the ULN2003A to ground.
For example, if you put the positive lead for a buzzer in one of the “+” terminals and the
buzzer’s negative lead into terminal “3,” the buzzer will sound if and only if you send a
software signal that lights the green LED. Under the binary system, that signal could be
binary 0100 = 22 = 4. The signal could also be any other value that lights the green LED, such
as binary 0101 = 22 + 20 = 5.
The motor controller provides independent control for up to 4 different devices. With the
buzzer’s negative still attached to terminal 3, for example, you could also attach a light from
the other “+” to the “1” terminal. (Lights typically conduct in either direction, so it doesn’t
matter which lead goes in which terminal.) Which this set of connections, the signal 4 (binary
0100) would sound the buzzer, the signal 1 (binary 0001) will light the light, and the signal 5
(binary 0101) will activate both simultaneously.
Some DC devices (for example fans designed for use in computers) may have connectors
that fit onto the headers. The 6 header pins match up with the terminal blocks as alternate

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 4
Connecting Math, Science and Technology

connection points. Putting a fan connector onto pin 4 and the “+” header next to it will make it
possible to activate the fan by sending the signal 8 (binary 1000). If the device is polarized
(usually with a red and a black lead), be sure the red (positive) lead goes onto the “+” pin.
The various versions of the SIGNAL and CONTROL programs can all be used to control any
of these DC devices.

Servo Motors
Important note: You can mix and match servo motors with the basic DC devices described
above but not using the same outputs. It is possible, for example, to operate a fan on line 4
(binary 1000) and a servo motor on line 2 (binary 0010), but you should never attach a servo
motor to the same line you are using to operate a fan, light, etc. If the constant signal that
operates the DC devices is also sent to a servo motor, the servo motor will draw a significant
amount of current without actually running correctly. This can damage the servo motor.
Bottom line—Each LED needs to be doing just one job.
Servo motors are widely used in advanced RC hobby vehicles such as model cars, boats and
airplanes. These motors do not power the vehicles, but are used instead to turn the steering,
adjust sails or rudders, etc. They include internal electronics to interpret instructions and also
to measure their own position. If you tell a servo motor to move to position 35°, for example, it
should move to that position. If it is already at 35° when it receives the signal, it may bounce
back and forth a little but it should not move more than a little. Servo motors do not have the
high precision and speed control of stepper motors, but they are a very convenient, low-cost
method for achieving many goals. Four servos (or eight if you use both LabPro outputs) are
enough to operate a model robotic arm. A simpler example of using a servo motor would be
to raise a flag or drop a ball.
(One limitation of this Motor Controller is that it cannot simultaneously send different signals to different servos.
For example, if you move servo 1 to 45° and then move servo 3 to -50°, only the friction in the motor keeps
servo 1 at 45°. If a flag on servo 1 is too heavy, it might drop back down when the signal stops. In situations
such as this, you need to look for physical solutions, such as adding a counter weight to better balance the flag.)

Hobby servo motors almost all come with 3-pin connects that fit onto the Motor Controller’s
servo connectors. It is very important to
orient the servo connector correctly,
with its negative wire (almost always
black) connected to the GND ground pin.
Instructions to the servo motor are in the
form of pulses. The signal line (opposite the
ground line) goes briefly from 0 V to 5 V
about once every 20 ms. The desired
position of the servo motor is signaled by
the width of this positive pulse—the time is
remains high. The desired pulse widths are
usually between about 0.5 ms and 2.5 ms,
and the resulting positions are usually
between about -80° and +80°. A sample
calibration curve is shown at right, but the

Futaba S3003 Servo Motor
Pulse Width vs. Angle y = 0.00001032x + 0.00143883

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

-90 -45 0 45 90

Angle (degrees)

Pu
ls

e
W

id
th

 (s
ec

on
ds

)

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 5
Connecting Math, Science and Technology

values can be very different for different brands and models of motors, sometimes even
reversing positive and negative movements. The calibration can also be different even
among servo motors that are the same brand and model. They really do need to be
calibrated individually to achieve the maximum effectiveness.
The SERVO and MCPUT programs control servo motors.

Stepper Motors
Stepper Motors are rather like traditional DC motors,
except that they use external circuitry to reverse the
magnets and keep the motion going. In the diagram
at right, a current in coil 1 makes the left magnet a
north pole. When current flows instead in coil 2, the
bottom magnet becomes a north pole and the
central magnet rotates counter-clockwise. A current
in coil 3 next makes the left magnet a south pole a
produces another step in the clockwise direction.
The cycle is finished by providing a current in coil 4
to make the lower magnet a south pole. Reversing
the sequence (4, 3, 2, 1) yields clockwise rotation.
Five-wire stepper motors connect the 2 common
leads internally.
The leads that provide current to each coil are always color coded, but the codes are different
for different manufacturers and even for different models made by the same manufacturer.
Color codes for some of the motors we use are shown below, numbered to correspond with
our programs for the Motor Controller.

 Coil 1 Coil 2 Coil 3 Coil 4 Common Common

Hurst SAS series Red White Blue Black Bicolor Bicolor

Applied Motion Green Red Green /
White

Red /
White

White Black

GBM 30BYJ011* Orange Yellow Violet Blue Red

GBM 35BY48B09 Green Red Yellow Brown Black Black

* The 30BYJ011 fits onto our 6 pin header (avoiding the top pin) with a sequence opposite
the one shown. That means the motor goes in the reverse direction from our standard.
Note that since stepper motors use all four lines they cannot be operated
simultaneously with either servo motors or other DC devices. When you use the Motor
Controller to run a stepper motor, nothing else should be connected to the board. A
servo motor connected to the board while you run a stepper motor program can be
damaged.

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 6
Connecting Math, Science and Technology

The simplest (but least common) mode of operation
for a stepper motor is just as described above—
activating one coil at a time to rotate the motor. This
“wave mode” is summarized in the table above. The
main disadvantage of the wave mode is that it uses
only one set of magnets at a time, so torque is
rather low. The biggest advantage is that this mode
is simple and uses relatively little current.
The most common mode always activates two coils,
so both magnets are providing torque. This “Full
Step Mode” is shown at top right.
It is also common to alternate between activating
one magnet and both magnets. This causes the
motor to move with twice the precision. A motor with
a 15° step, for example, can be made to move in
7.5° increments. Average torque is lower than in
full-step mode.
The STEPPER and MCSTEP programs are
designed to operate stepper motors through the
Motor Controller board.

Wave Mode
Coil

1
Coil

2
Coil

3
Coil

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

C
lo

ck
w

is
e

─
─
─
─
─
─
─
─
─

>

1 0 0 0

C
ounterclockw

ise
─
─
─
─
─
─
─
─
─ >

Full-Step Mode

Coil
1

Coil
2

Coil
3

Coil
4

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

C
lo

ck
w

is
e

─
─
─
─
─
─
─
─
─

>

1 1 0 0

C
ounterclockw

ise
─
─
─
─
─
─
─
─
─ >

Half-Step Mode

Coil
1

Coil
2

Coil
3

Coil
4

1 0 0 0

1 1 0 0

0 1 0 0

0 1 1 0

0 0 1 0

0 0 1 1

0 0 0 1

1 0 0 1

C
lo

ck
w

is
e

─
─
─
─
─
─
─
─
─

>

1 0 0 0

C
ounterclockw

ise
─
─
─
─
─
─
─
─
─>

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 7
Connecting Math, Science and Technology

Using the Motor Controller with TI Graphing Calculators

Program Descriptions
The calculator programs below are available for download at http://mathmachines.net

SIGNAL – An interactive program that allows the calculator to activate
the digital output lines. Applications include turning on lights, buzzers,
fans, etc. for a time specified from the calculator.

SIGNAL.8XP

CONTROL – An interactive program that reads the value on the sensor
in Analog Channel 1 and activates the output lines in accordance with
the logic stored as a function Y9 in the calculator.

CONTROL.8XP

DCUINIT -- A utility program developed by Vernier Software (and
distributed with their permission) which verifies correct communications
between the calculator and the CBL and which keeps the LabPro from
shutting down prematurely.

DCUINIT.8XP

SIGNALF (Signal For) -- This modified version of Signal is designed to
be used as program module within other programs. Rather that asking
the user to input values of S (the signal) and T (time) while the program
is running, the values are set in advance by a higher level program.

SIGNALF.8XP

SIGNALW (Signal While) -- This program combines features of Signal
and Control in a program module for use in higher-level programs. It
continuously monitors probes in analog channels 1 and 2, assigning the
results to variables "E" and "F" respectively. It also records the elapsed
time in seconds as "T." The program continues to monitor the inputs
until the value of calculator function Y9 becomes zero. (The program
"times out" if the condition in Y9 does not become zero within 20
minutes.)

SIGNALW.8XP

SERVO – An interactive program that allows the calculator to control
hobby servo motors, available in many hobby stores. The user specifies
a signal to specify one or more motors and inputs the desired angular
position, and then the motor or motors move to that position.

SERVO.8XP

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 8
Connecting Math, Science and Technology

MCPUT – The program module version of SERVO, this program
uses the value of S to select one or more servos then moves them
to angular position, A.

MCPUT.8XP

STEPPER – An interactive program that controls a unipolar stepper
motor, allowing the user to specify the step size, angular speed and
angular displacement.

STEPPER.8XP

MCSTEP -- The program module version of STEPPER, this
program moves a stepper motor through an angular displacement,
A, at angular speed U. The motor’s step size must also be stored
as variable Q. A must be in degrees and can be either positive (for
counterclockwise rotations) or negative (for clockwise). The angular
speed, U, must be in rpm (revolutions / minute) and must be
positive. The motor’s step size, Q, must be specified in degrees.

MCSTEP.8XP

READ1 – A program modules that activates Channel 1,
autoidentifies the sensor and take a series of 5 readings at 0.05 s
intervals. The average reading is stored as variable E.

READ1.8XP

READ2 -- A program modules that activates Channel 2,
autoidentifies the sensor and take a series of 5 readings at 0.05 s
intervals. The average reading is stored as variable F.

READ2.8XP

READ3 -- A program modules that activates Channel 3,
autoidentifies the sensor and take a series of 5 readings at 0.05 s
intervals. The average reading is stored as variable G.

READ3.8XP

READ4 -- A program modules that activates Channel 4,
autoidentifies the sensor and take a series of 5 readings at 0.05 s
intervals. The average reading is stored as variable H.

READ4.8XP

PROG01 -- A sample “higher level” program to illustrate how
SIGNALF and SIGNALW can be used by students or teachers to
construct their own programs

PROG01.8XP

Using the Motor Controller

Robert Chaney and Fred Thomas Sept. 20, 2005 Page 9
Connecting Math, Science and Technology

Variable Use in the Program Modules

Variable Use Used but
not changed

Changed
or deleted

Never
used

A Angle (degrees) X
B Short-term internal use X
C Short-term internal use X
D Distance (centimeters) X
E Ch1 Sensor X
F Ch2 Sensor X
G Ch3 Sensor X
H Ch4 Sensor (LabPro only) X
I Counter X
J Counter X
K Key X
L Reserved for higher level programs X
M Reserved for higher level programs X
N Reserved for higher level programs X
O Reserved for higher level programs X
P Reserved for higher level programs X
Q Hardware specific data X
R Pulse width X
S Signal or Step counter X
T Time (s) X
U Angular Velocity (degrees/second) X
V Velocity (cm/s) X
W Flag for program control X
X Reserved for higher level programs X
Y Reserved for higher level programs X
Z Reserved for higher level programs X
θ Reserved for higher level programs X

